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Abstract 
Research Question 
There are many safety factors to consider when designing a Hyperloop system. The main factors 

include debris on the track, cracks, and defects in the tunnel. To ensure that these factors are kept 

at bay, various sensors and equipment must be added. The additions of these sensors and 

equipment can be costly and occupy considerable space. The research question is: how can the 

main safety factors be covered without being too expensive or volume consuming? 

Overview of Motivation 
The motivation for this research stems from two key factors. To develop a more modern safety 

system for the Hyperloop pod and to ensure quality assurance throughout transit due to cases 

such as faults in systems, obstacles, and faulty sensors. These elements were vital to the research 

motivation, as these cases pose risks and potentially destruction of the pod in transit if not 

handled correctly. The camera developed from this research aids to prevent these issues. 

Presentation of Results 
The final product generated by research and execution through different attempts is a camera 

system capable of identifying objects and tracing Hyperloop tracks. The product includes 

mechanical and hardware designs that allow the system to be mounted on experimental 

Hyperloop pods, as well as software capable of working with physical components to meet MVP 

requirements. The product uses the YOLO algorithm and Python libraries, such as TensorFlow, 

to have the desired functionalities as outlined in the motivation. Several datasets were also 

generated and downloaded to train the machine-learning model, which allowed the final product 

to identify several common items as proof-of-concept.  

The camera system has been designed to accommodate 3D printing as part of the manufacturing 

process and mostly uses off-the-shelf hardware components. In terms of software, the Python 

programming language was used to develop the various algorithms necessary to train and use 

machine-learning models. 
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General 
Description 
Queen’s Hyperloop Design Team (QHDT) is a dynamic group of over 150 passionate students 

from Queen’s University, Kingston. Collaborating across diverse disciplines, the team shares a 

vision to change the future of transportation. Leveraging the immense talent within Queen’s 

University, our multi-disciplinary team is committed to pushing the boundaries of innovation and 

engineering excellence. This paper serves as a testament to the collective dedication and progress 

made towards making Hyperloop a reality. QHDT is also a partner and competitor of the 

Canadian Hyperloop Conference (now Hyperloop Global), another annual competition. 

With the advancement of technologies in the software and computing industries, there is now an 

opportunity for the implementation of advanced computer vision systems to provide numerous 

advantages to student-designed Hyperloop pods. In particular, the ability to detect objects and 

trace rails have been enhanced with breakthroughs in machine learning models. While camera 

systems may not replace sensors completely at the current stage, the ability to visualize the 

surroundings of a Hyperloop pod in operation can benefit Hyperloop infrastructure and improve 

safety factors of pods. In general, such technologies can reduce accidents, provide developers 

with more data to work with, and enhance various systems of a Hyperloop pod. Applications and 

benefits of such systems can also be seen on existing train station cameras and rail sensors, as 

seen in Figure 1. 

 

Figure 1: Image detection as seen on a camera pointed at train tracks. 

As a team, Queen’s Hyperloop has been investigating the numerous applications of machine 

learning and machine vision models in Hyperloop systems. Specifically, the team has built and 
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applied object detection and line tracking algorithms to improve Hyperloop pods, which are used 

as part of a physical mounted camera system that can be attached to Hyperloop pods rapidly [1]. 

This research project included both physical and software components that function as a system 

when attached to a chassis. While limited, the system also provides data and outputs that can be 

used to control other subsystems on an Hyperloop pod. 

Environment & Objectives 
Machine learning and software development requires a digital environment and relevant tools 

that enable the development of software applications. Hence, most of the work done for research 

in such areas was carried out on computers and software tools were used to complement the 

process. To create an efficient environment to reach goals and complete tasks, all code was 

written using Python-compatible Integrated Development Environments (IDEs) and shared using 

GitHub. This created a seamless and synchronous development process. 

The MVP objective was to create a camera system powered by advanced ML/AI models to 

enhance the performance and safety of Hyperloop systems. The camera system was to 

incorporate an object detection AI model to accurately identify and localize objects within the 

video frame. The model aimed to analyze the visual content and identify defects, debris, and the 

future positions of the pod. The model was trained on a dataset that included various object types 

to allow for accurate object detection. Monitoring the condition of the track through using the 

model would help in detecting any structural damage, cracks, or other abnormalities that would 

affect the operation and safety of the system.  

The long-term goal was to have an accurate and affordable functioning camera system that can 

pass all test cases to ensure a secure and reliable transportation system. The test cases will 

include uploading video feeds to make sure the object detection system can identify defects, 

debris, and the future position of the pod. The AI model was trained to detect relevant objects so 

that appropriate responses can be generated by the model for the Hyperloop control system. The 

future positions of the pod will be determined by detecting and identifying the tracks and their 

turns, as well as other information provided by various onboard sensors. The system must output 

the future positions in a way that can be used to adjust the pod.
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Research 
Introduction 
Topic & Motivation 

The advancement of transportation technology has always been at the forefront of human 

progress. With the emergence of the Hyperloop concept, a new era of high-speed, efficient, and 

sustainable transportation is on the horizon. However, as with any innovative system, ensuring 

safety and reliability are paramount concerns. 

Motivated by the need for an advanced safety infrastructure and a robust quality assurance 

process, the team’s research aims to explore solutions that mitigate risks and enhance both 

passenger and pod safety during Hyperloop operations. Utilizing a camera-based system will 

help to overcome the limitations of traditional sensor and equipment installations, which can be 

costly and space-consuming. 

The camera system would be attached to individual pods and provide data through machine-

learning tools. The features of this system will allow for prediction of turning angles, identifying 

weaknesses or damages of the infrastructure, and detecting objects or humans that may cause 

harm to human lives and Hyperloop pods. These features aim to enhance the safety of passengers 

on Hyperloop pods while improving operational efficiency of onboard equipment. 

Background Information 
In this research paper, QHDT addresses the challenge of developing a cost-effective and space-

efficient safety system for the Hyperloop Pod. The objective is to tackle key safety factors, 

including debris on the track, cracks, defects in the tunnel, and predict the future position of the 

pod for necessary adjustments. By focusing on these factors, QHDT aims to create a modern 

safety system that enhances the overall quality assurance of Hyperloop transit.  

The core question guiding this research is: How can the main safety factors associated with 

Hyperloop systems be effectively addressed without incurring exorbitant costs or compromising 

space within the Hyperloop pod? 

To ensure efficient collaboration and maintain consistency among team members, all code 

development was built using Python-compatible IDEs and shared through GitHub. This approach 

facilitates seamless code readability, ease of modification, and synchronization among team 
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members. OpenCV and Python code were used to test and train the AI model. OpenCV is a 

computer vision and machine learning software library that provides various tools and algorithms 

for video and image processing [2]. Video processing is mainly used for filtering, thresholding, 

and transformation. However, the main video processing feature used in the project is feature 

detection and extraction. OpenCV includes functions for detecting edges corners and blob in a 

video as well as being able to track the detected item through multiple frames of video. Next, this 

project took advantage of the machine learning algorithms offered by OpenCV. OpenCV 

includes algorithms for clustering, dimensionality reduction, and regression analysis. These 

algorithms can be used to group similar objects together, reduce the number of features in a 

dataset, or predict the value of a continuous variable based on other factors and patterns. 

Testing of the AI model entails using procedurally generated environments and existing videos 

to act as proof-of-concept test environments. The procedurally generated environments create a 

video where desired objects for detection will pop up in the video at random. Once the AI is 

trained to detect these desired objects, the generated environments will be swapped with existing 

videos to act as a real-world environment. The existing videos will fine tune the training of the 

AI model as factors that may be non-existent in the generated environment. These factors include 

false identification (identifying objects that look like the desired objects but are not), lighting 

changes, and cluttered or textured backgrounds. 

Methodology 
The final solution was generated using three different approaches to the problem, each using 

different software and hardware designs to attempt as many methods as possible. Four groups of 

students were tasked to handle the approaches and try for a final design solution. The 

methodologies and results of these groups were classified into the three approaches as shown 

below. Note that all approaches occurred roughly around the same period, where limited 

communication exists between the groups. 

Once complete, the approaches were then evaluated relative to the MVP goals to generate a final 

solution from their design choices. This process allowed for multiple software practices and 

hardware components to be put through the trial, which improved the overall confidence of the 

team when moving forward to the final solution. Moreover, the diverse approaches provided 

insights that would otherwise be lost for the problem at hand, which could be explored later in 
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other research projects. The methodology used in this research project is like forming study 

groups to investigate certain topics, where multiple groups were tasked to solve an open-ended 

problem. 

Approach 1: Edge Impulse 
The first approach for the system implementation consisted of three subsystems: the sensor 

infrastructure, the embedded system, and the user interface. The sensor infrastructure served as a 

protective case for the embedded system that housed the camera module, ensuring the safety and 

durability of the system’s components. Meanwhile, the embedded system comprised of the 

BalenaFin, a Raspberry Pi camera module, and a Raspberry Pi microcontroller. Note that the 

case can be 3D printed to ease the manufacturing process. All parts of this design are listed 

below in Table 1 and are displayed as an exploded view in Figure 2 and as a complete system in 

Figure 3. 

Table 1: All materials listed for this embedded system. 

Item 
No. 

Part Description Quantity 

1 BalenaFin Carrier board for the Raspberry Pi 
microcontroller (9 x 9 x 1.5cm) 

1 

2 BalenaFin Case Comes with BalenaFin to protect components 
(11.5 x 9.5 x 4cm) 

1 

3 Power Supply 12V 2A Power Supply Adapter 1 
4 USB to USB-C Cable To connect BalenaFin to display (32cm long) 1 
5 RPI Camera Module Raspberry Pi Camera Module V2 (2.4cm x 

2.5cm) 
1 

6 Camera Case Front Protective case for camera module 1 
7 Camera Case Back Protective case for camera module 1 
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Figure 2: Isometric View of the Embedded System.          Figure 3: Exploded View of the Embedded System 

The microcontroller was programmed with an object and lane detection machine learning model 

obtained from Edge Impulse, an open-source collection of pre-trained models [3]. The chosen 

model, called “Faster Objects, More Objects” (FOMO), is an “algorithm that enables 

microcontrollers to perform real-time object detection, tracking and counting” [4]. It utilized 

algorithms from OpenCV, Keras, and TensorFlow and was implemented in Python to identify 

and detect any potential hazards in real-time. OpenCV is an open-source library that includes 

several hundred computer vision algorithms and was used for performing different tasks such as 

object detection and video analysis [2]. The Keras library provides a Python interface for 

artificial neural networks as well as acts as an interface for the TensorFlow library [5]. 

TensorFlow is a machine learning platform that was crucial in the creation of the algorithm as it 

processes and loads data, trains models, and implements algorithms into a real system [6]. This 

algorithm was trained using the supervised learning method which uses a training set of images 

to teach the algorithm.  Figure 4 below outlines the process for training the algorithm. 
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Figure 4: Training Process for the Algorithm 

The data from the embedded system was transmitted to a user interface, which was as a platform 

to present the data to stakeholders. The platform was a website that was developed using HTML, 

CSS, and Flask, a Python web-development framework [7]. Wireframes and mockups of the 

UI/UX were created using Figma, a collaborative design space for creating high-fidelity designs 

of user interfaces. Once the UI/UX design was created using Figma, Tkinter-Designer was used 

to convert the Figma design into Python code with the Figma API. Figure 5 below outlines the 

methodology to obtain and display the data. 

 

Figure 5: Flow Chart for obtaining and displaying data. 

However, despite these efforts, this approach faced several issues. The BalenaFin, which was 

initially selected as part of the embedded system, lacked the necessary modularity and was 

subsequently replaced with an alternative Raspberry Pi board. The Raspberry Pi boards also 

lacked sufficient computational power, leading to low frame rates and frequent screen freezes. 

They could not handle the required tasks of both computing and displaying information. 

Moreover, the pretrained FOMO model was incompatible with the BalenaFin board, further 

hindering implementation and undermining the system's feasibility. Given these limitations and 



8 

   
 

issues with the selected components, an alternative approach had to be pursued to achieve the 

desired functionality and reliability in the system. 

Approach 2: Python Application with Dedicated Hardware 
The second approach utilized three subsystems: sensor infrastructure, machine learning model, 

and user interface. 

Instead of using a camera as the main source of detection, this approach was attempted using 

LiDAR sensors. LiDAR is an acronym for light detection and ranging as it uses light pulses to 

gather three-dimensional information about the tunnel the hyperloop pod will travel in [8]. 

LiDAR will have a longer range than a camera and will have an easier time keeping up with 

1000km/h speeds. However, LiDAR is not able to sense colour which may cause issues as small 

cracks and debris may not be sensed by lidar and would need to rely on color to be sensed. 

Figure 6 is a visual representation of a LiDAR scan provided below. 

 
Figure 6: Visualization of the LiDAR scan 

The machine learning model utilizes a Python library known as Scikit-learn, which provides 

access to a type of commonly used type of algorithm called support vector machines. They sort 

given data into classes, which are the categories given in the labels of the training dataset. For 

example. If the support vector machine is given images of fruit labelled either “apple” or 
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“orange,” the support vector machine will sort a new, unlabeled picture, into these two 

categories. Then, the team used TensorFlow, a Python library developed by Google which 

simplifies the implementation of machine learning [6]. It has pre-existing machine learning 

models in the form of neural networks to help get projects started and is overall easier to 

implement compared to other similar frameworks. The neural network itself is a more complex 

version of a classification algorithm. It is made up of layers which “weight” features/attributes of 

the data (edges, size, etc.) and compute information from sensors in matrices. A loss function is 

also defined, which compares the network’s predictions on test data to reality and updates it by 

changing the weights and computations accordingly. These two parts together form the machine 

learning model. 

For this approach, a custom-made dataset was implemented, and the pre-existing model was 

trained with it. When training a machine learning model to a new dataset, it is important to note 

that the more images there are the better the dataset is. Also, there should also be a balanced 

number of images for each object that a model is trying to classify. As the specificity of the 

model increases, the more specific the labels will be, but also the images as the model must be 

able to distinguish between two similar objects what this means is that as you want to distinguish 

between two similar objects the inputs need to reflect how they are different. 

The machine learning model is integrated with the LiDAR sensors using a fully embedded 

system. An Orange Pi 3 LTS is sufficient for image processing and is used as the main CPU for 

the system. Once the image is processed and should an object be detected, it is sent first to the 

Hyperloop controller to minimize latency, then is shown to the user on a screen mounted to the 

Hyperloop pod. This entire system is powered by the Orange Pi since the power draw will be so 

low that it will not rely on power from any of the other Hyperloop subsystems. A flow chart 

depicting the pattern of the vision sensor system process described above can be seen below in 

Figure 7. 
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Figure 7: Flow Chart for this approach. 

The user interface was created using Flask, a lightweight web framework that can be used to 

easily create web applications. The user interface uses green lines to follow and detect the tracks. 

Then, a pink rectangle is used to detect irregularities or damage that the pod may come across. 

Finally, if an irregularity is detected, the user will be notified and prompted with the appropriate 

action. Figure 8 shows the proposed user interface. 

 

 

Figure 8: The User Interface for this approach. 
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In conclusion, the second approach utilizes LiDAR sensor instead of cameras to detect tracks and 

irregularities in the hyperloop tunnel. The LiDAR sensors relay their imaging to the Orange Pi 3 

LTS where the images will be processed, and the machine learning model will scan for tracks 

and objects. Finally, the outputs from the machine learning model will be displayed on the User 

Interface with a visual and verbal representation of the detected objects. 

Approach 3: Python Application Without Dedicated Hardware 
The last approach was a system composed of three subsystems: the hardware system, back-end 

software, and user interface. The hardware system was comprised of a chassis adjusted to a 

protective case for the camera. This was done to reduce the amount of 3D printing required as 

the battery pack and Raspberry Pi both already have exterior casings. This change also allowed 

for an ease of access to the camera for repairability. Figure 9 shows the different views of the 

camera chassis.  

 

Figure 9: All view of the proposed chassis. 

 

The backend software consists of two complementary algorithms, namely an object detection 

algorithm and a lane detection algorithm. To achieve real-time object detection, the team 

implemented the renowned “YOLO (You Only Look Once)” algorithm. YOLO excels in swiftly 

detecting objects within its field of view and accurately determining their relative positions, 
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making it well-suited for deployment in a fast-moving pod [9]. Conversely, the lane detection 

algorithm incorporates a fusion of multiple algorithms to accomplish its intended purpose. These 

algorithms used Canny Edge detection and probabilistic Hough Transformations, which 

effectively converted detected edges into lines [10]. By employing these techniques, the 

algorithm proficiently identifies and tracks lane boundaries, contributing to enhanced navigation 

and path planning for the pod. After developing a machine learning model, it is imperative that it 

is trained using an appropriate dataset. Recognizing the significance of this process, the team 

adopted a pragmatic approach by utilizing readily available datasets from platforms like Open 

Images Dataset [11]. This platform offers a vast array of pre-existing datasets encompassing 

hundreds of objects, streamlining the training phase of the model. As a proof-of-concept, the 

model has been trained to identify specific items. (See Figure 10).  

 

Figure 10: Trained model being able to detect objects. 

The lane detection algorithm operates on a continuous stream of real-time video input, 

processing each frame individually to detect and track lane boundaries. The process involves a 

series of steps that enhance the image quality and isolate the lane lines for accurate identification. 

Initially, the oncoming video is divided into discrete frames. Each frame undergoes pre-

processing, wherein the colours are transformed into grayscale and a blurring technique is 
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applied to reduce noise and enhance edge detection accuracy. The Canny Edge detection 

algorithm is then employed to extract the edges from the pre-processed grayscale image. This 

conversion results in an image that highlights the prominent edges and lanes within the frame. To 

further refine the edges, a mask is applied to exclude regions that are less likely to contain lane 

markings. Subsequently, probabilistic Hough Transformations are used to identify line segments 

that constitute the lane, which are then averaged out into two separate lines representing the left 

and right lane boundaries. To provide visual feedback to the user, the identified lane lines are 

superimposed onto the original frame and are outputted to the user at the same frame rate as the 

original video, ensuring real-time visualization of the lane detection process. Figure 11 below 

outlines a flowchart for the lane detection algorithm. 

 

Figure 11: Flowchart for lane detection code highlighting all the major steps taken by the code to detect a lane. 

 

One of the primary advantages of this lane detection algorithm lies in its simplicity and 

versatility. It offers a straightforward implementation that can be easily understood and 

customized by users. Furthermore, its versatility enables optimization for various use cases, such 

as low-light conditions, high-speed scenarios, or complex tracks with numerous turns. Figure 12 

below shows images that demonstrate the lane detection algorithm in action. 
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Figure 12: Images to demonstrate lane detection. 

The front-end of the software is a user-friendly interface designed to provide real-time updates 

during the operation of the Hyperloop pod. It consists of two prominent panels, each serving a 

distinct purpose. The first panel displays a live video feed captured by the pod's camera, while 

the second panel presents updates on any objects detected within the camera feed. Below these 

panels, a status bar is located, which relays alert and warning messages if any abnormalities are 

detected during the pod's runtime. When the object detection algorithm identifies an object 

within the video feed, in addition to displaying the relevant information in its designated panel, 

the status bar undergoes a visual change from a neutral state to display an alert message 

throughout the duration of the object detection process. This alert message serves as an indicator 

to the user that an object has been detected and requires attention. If the object being detected is 

located on the track and poses a potential collision risk with the pod, the status bar displays a 

waring message specifically indicating that the object is obstructing the pod’s path. In scenarios 

where the lane detection algorithm detects that the pod is deviating from the track, the status bar 

presents a warning message stating that the pod is deviating from its intended path. This warning 

message serves as a prompt for the user to take corrective measures to ensure the pod remains on 

the designated track. Additionally, if the lane detection algorithm fails to detect the lane lines 

altogether, the status bar switches to display a warning message indicating that the pod's path is 

blocked. This message signals that the algorithm is unable to accurately identify the lane 

boundaries, potentially resulting in unsafe navigation conditions. In cases where both the object 

detection and lane detection algorithms trigger warning messages simultaneously, priority is 

given to the lane detection warning message. This decision assumes that the object detection 

panel will already highlight the presence of any significant objects that the pod may encounter, 

emphasizing the importance of displaying the lane detection warning message to draw attention 
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to potential deviations from the designated track. Overall, this user-friendly interface offers a 

comprehensive and intuitive means of monitoring the pod's operation, providing real-time video 

feedback, object detection updates, and crucial warning messages to ensure the safety and 

efficient functioning of the Hyperloop pod. Figure 13 shows the full display of the UI for lane 

detection. Figure 14 shows the display of notifications for the user. Figure 15 is a flowchart for 

the lane detection code. 

 

Figure 13: Fullscreen display of the UI running a lane detection test video. 
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Figure 14: Display of neutral status message (Top), object detection alert (Second Top), object detection warning message 
(Middle), pod path deviation warning message (Second Bottom), pod pathway being blocked warning message (Bottom). 

 

 

Figure 15: Flow chart of the lane detection algorithm. 

Finally, the integration between the camera and the computer running the UI software is linked 

using a P2P (Peer-to-Peer) Connection. This UI software, in the form of an executable, connects 

to the vision sensors computer and send all relevant information to the UI. This means that the 
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UI runs independently from the machine. With this design the UI can also be stored on a USB 

key and transported to any relevant operator with ease. The P2P connection will be done via an 

ethernet cable connecting to the machine’s onboard computer. The flowchart below shows the 

process of the system in Figure 16. 

 

Figure 16: Flowchart of the P2P connection approach. 

Results and Discussion 
Evaluation of Approaches 
Valuable lessons were learned from the three approaches to the problem, especially regarding the 

choices of components and software practices. It is apparent that certain methods worked 

effectively individually but had issues when integrating with other components. Conversely, 

certain design choices worked well when combined as a package but are ineffective in terms of 

performance or simply cannot meet the minimum viable product. To create the final product and 

ensure that the solution meets all functional requirements, all three approaches were first given a 

performance score using an evaluation matrix. These scores would then be used to select certain 

design choices that hold high influence for higher scores in relevant categories, which would 

then be used to piece together the final product. 

The effectiveness of each approach was evaluated using the following evaluation with criteria 

listed and explained in Table 2 to justify the given scores. 

Table 2: Criteria to evaluate the solutions. 

Score 1 2 3 4 5 
Safety Physical 

design is 
Physical 
design is 

Physical 
design is 

Physical 
design is safe; 

Physical 
design is safe; 
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not safe. 
users’ 

safety is in 
danger. 

somewhat 
safe; 

however, 
precautions 
need to be 

taken while 
using the 
device. 

relatively 
safe, with a 
slight risk to 
user safety.   

however, 
improvements 
can be made 
to decrease 
the user’s risk 
of danger. 

there is no 
risk to user 
safety 

Appearance Physical 
design does 
not exist. 
Missing 
components 
/ no 
protective 
casing. 
UI/UX is 
very 
difficult to 
use and 
very 
unaesthetic. 

Physical 
design is dull 
and bulky. 
None of the 
components 
are enclosed 
in a 
protective 
casing. 
Design is not 
aesthetic nor 
uniform. 
UI/UX is 
complicated 
and not 
aesthetic 

Physical 
design is 
bulky and 
rough. Most 
components 
are not 
enclosed in a 
protective 
casing. 
Design is not 
very aesthetic 
and uniform. 
UI/UX is 
somewhat 
complicated 
but aesthetic  

Physical 
design is 
somewhat 
sleek. Most of 
the 
components 
are enclosed 
in a protective 
casing. Design 
is somewhat 
aesthetic and 
uniform. 
UI/UX is 
somewhat 
simple and 
aesthetic 

Physical 
design is 
sleek. Each 
component is 
enclosed in a 
protective 
casing. 
Design is 
aesthetic and 
uniform. 
UI/UX is 
simple and 
aesthetic 

Functionally UI/UX 
does not 
function / 
exist. 
Hardware 
component 
is not safe. 
Design is 
not 
compact or 
easy to 
apply 

UI/UX is 
difficult to 
use. 
Hardware 
component is 
not safe. 
Design is not 
compact and 
is difficult to 
apply. 

UI/UX is 
somewhat 
difficult to 
use. 
Hardware 
component is 
mostly safe. 
Design is 
compact but 
difficult to 
apply. 

UI/UX is 
somewhat 
easy to use. 
Hardware 
component is 
safe. Design is 
somewhat 
compact and 
easy to apply. 

UI/UX is easy 
to use. 
Hardware 
component is 
safe. Design 
is compact 
and easy to 
apply 
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Requirements Does not 
detect 
objects. No 
UI/UX 
component. 
The model 
does not 
work/exist 

Detects 
objects up to 
10m ahead or 
less and 1m 
to the side or 
less with 
some errors.  
UI/UX does 
not produce 
warning 
when object 
is 
approaching. 
Machine 
Learning is 
not used at 
all 

Detects 
objects up to 
10m ahead or 
less and 1m 
or less to the 
side without 
errors. UI/UX 
produces 
warning 
when object 
is 
approaching 
with lots of 
errors. 
Minimal 
Machine 
Learning 
aspects 

Detects 
objects up to 
20m ahead 
and 2m to the 
side with 
some errors. 
UI/UX 
produces 
warning when 
object is 
approaching 
with some 
errors. 
Aspects of 
Machine 
Learning is 
implemented. 

Detects 
objects up to 
20m ahead 
and 2m to the 
side without 
errors. UI/UX 
produces 
warning when 
object is 
approaching 
without 
errors. Full 
Machine 
Learning 
Model is used 

Compatibility None of the 
subsystems 
are 
compatible 
with the 
QHDT’s 
design.  

Only one 
subsystems 
of the 
prototype are 
compatible 
with the 
QHDT’s 
design.  

Two 
subsystems of 
the prototype 
are 
compatible 
with the 
QHDT’s 
design. 

All three 
subsystems of 
the prototype 
are almost 
compatible 
with the 
QHDT’s 
design. 

All three 
subsystems of 
the prototype 
are 
compatible 
with the 
QHDT’s 
design. 

 

Approach 1: Edge Impulse 
For the first approach, the following scores were given for each category based on the 

prototype’s performance, as shown in Table 3. 

Table 3: The evaluation score of the first approach. 

Criteria Safety Appearance Functionality Requirements Compatibility 
Score 4/5 5/5 3/5 3/5 3/5 

 

The first approach saw the creation of comprehensive mechanical and hardware designs that 

would be easily manufactured using 3D printers. However, the FOMO model proved to be 

inferior to YOLO and Edge Impulse was problematic during integration. The prototype provided 

great insights into the requirements of a successful and robust machine-learning model, which 
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allowed for better understanding of training and testing processes of machine vision. Hence, the 

model was scored high in terms of physical design but low on other categories, resulting in its 

mechanical and hardware designs being implemented in the final product. 

Approach 2: Python Application with Dedicated Hardware 
For the second approach, certain information was successfully passed from the first approach, 

leading to a better prototype. With knowledge of the first model, a better model was created from 

scratch with each subsystem being much more compatible with each other. Although this led to 

better performance on the microcontroller, it came with hindered accuracy causing lower 

appearance and requirement scores on the evaluation matrix shown in Table 4. This model could 

have been implemented into the design, however, it was ultimately abandoned and reiterated for 

a much more accurate and effective model. 

Table 4: Evaluation rubric for the second approach. 

Criteria Safety Appearance Functionality Requirements Compatibility 
Score 4/5 3/5 4/5 2/5 5/5 

 

Approach 3: Python Application without Dedicated Hardware 
For the third approach, an effective YOLO algorithm was implemented to detect objects in real 

time with minimum delays. In addition to object detection, lane detection was made possible 

using Canny Edge and Hough Transformation. A proper UI was also designed and successfully 

implemented, making this prototype the strongest in terms of software performance. Beyond the 

machine-learning models and UI, the software provides data storage capabilities and enables the 

Hyperloop system to react to different events. The implementation of this advanced response 

framework allows for easier integration of the camera system with existing control systems.  

Table 5: Evaluation rubric of the third approach. 

Criteria Safety Appearance Functionality Requirements Compatibility 
Score 4/5 3/5 5/5 5/5 5/5 

 

However, the prototype does not have a physical design that is better than the approach 1 

prototype. It does have superior software capabilities and would theoretically be easier to 

integrate with most existing hardware components. In the end, the software components of this 

prototype were selected to move forward to be integrated into the final product.  
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Final Product 
The integration of the third approach for its software-based object and lane detection along with 

the first approach for its mechanical and hardware components resulted in the development of 

the final product for real-time monitoring and safety enhancement in Hyperloop pods. 

Approach three focused on the software aspect of the system, incorporating algorithms for object 

and lane detection. The object detection algorithm utilized the YOLO algorithm, renowned for 

its ability to swiftly detect objects within its field of view. This algorithm was trained using 

datasets from platforms like Open Images Dataset, streamlining the training phase and enabling 

the identification of specific objects. The lane detection algorithm incorporated a fusion of 

algorithms, including Canny Edge detection and probabilistic Hough Transformations. This 

algorithm effectively detected and tracked lane boundaries, contributing to enhanced navigation 

and path planning for the Hyperloop pod. 

Approach one focused on the mechanical and hardware elements of the system. It included the 

sensor infrastructure and the embedded system. The sensor infrastructure served as a protective 

case for the embedded system, ensuring the safety and durability of the camera module. The 

embedded system consisted of a BalenaFin microcontroller, a Raspberry Pi camera module. 

Although the BalenaFin had issues with implementation in the first approach, it was still 

considered in the final product due to its higher processing power and extra memory storage over 

a conventional Raspberry Pi.  
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Figure 17: Exploded view of the final system. 

The integration of these approaches resulted in a powerful system that combines the capabilities 

of real-time object and lane detection with potentially robust mechanical and hardware 

components. The final product provides a user-friendly interface for monitoring the operation of 

Hyperloop pods in real-time. The interface displays a live video feed captured by the pod’s 

camera and provides updates on any objects detected in the camera feed. It also includes a status 

bar that relays alert and warning messages, indicating potential obstacles or deviation from the 

designated track. The combination of these approaches provided an effective solution for object 

detection, lane detection, and user interface, ultimately improving the safety and efficiency of 

Hyperloop transportation. 

To use the final product on real Hyperloop pods, users can apply the same techniques to train the 

model to identify new desirable objects and tracks. The physical system can then be mounted on 

a pod and interfaced with existing control systems, which will work with the machine-learning 

software to operate during transit. Ideally, the model would be trained to identify common 

objects and issues with Hyperloop systems, so that the pod can pick up their presence during 

operation and act immediately if necessary. 



23 

   
 

 
Figure 18: UI for the final system showing the live video feed, objects detected, and any notifications. 

Results Discussion 
By implementing a fully functional object and lane detection algorithm into an Hyperloop pod, a 

safer environment is created for the user as well as a more reliable system. For further 

improvement of the current design, it would be ideal to have focused on integration from the 

start as it has caused problems with multiple approaches from the start as well as ensuring a 

smooth process between subsystems. There should also be a stronger focus on the type of 

hardware that is used as there have been some framerate and processing issues with previous 

approaches. Lastly, it is recommended to retrain the model on better datasets to reflect new 

environments, as different Hyperloop systems may include different features that would require 

the model to adapt and conquer. 

As stated earlier, the final design also does not have a reliable hardware system that allows for 

the software functions to run optimally. The core problem is due to hardware integration issues 

and performance, where chipboards cannot run the software to display information efficiently. 

However, the software on its own can still perform on a computer using its webcam, which 

provides proof of its functionality and effectiveness if an ideal hardware system is used. In the 

future, a logical solution would be to combine hardware systems together to strengthen their 

processing power, or simply find more powerful boards on the market. These solutions would 
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still sacrifice other aspects of the design, such as increasing space usage or costs. Lastly, a 

critical assumption was made that the camera system and algorithm would be powerful enough 

to function normally during high-speed conditions. This assumption remains to be tested as there 

are no ways for the team to conduct a test with a fast vehicle easily. 

The benefits of the systems are also to be seen. The main idea behind the various features of the 

MVP is to allow more safety factors to be added to the pod instead of the infrastructure, which 

typically would be the most expensive part of an Hyperloop project. By having the pod as a more 

autonomous and effective maintenance or error forecasting tool, companies can save valuable 

money on construction as failure detection tools are localized within the pods. Other functions 

like lane detection can also help onboard control systems to better navigate through turns, which 

can allow pods to run more autonomously and fare better against uncertainty. 

When investigating similar topics, it is important to dive deeper into applications of machine-

learning in Hyperloop, as the technology behind it has been improving drastically over the past 

few years. The costs of implementation have also decreased and could be widely used in many 

ways beyond data science, which is critical for costly projects like Hyperloop systems. 
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